

Introduction

Challenges of Single Image Reflection Removal

State-of-the-art methods trained on synthetic data generalize poorly to real-world cases. These failures stem from:

- the fundamental ill-posedness of the problem
- the domain gap between the synthetic world and real-life photographs
- the insufficiency of densely-labeled real-world training data

Contributions

- Context encoding modules that are capable of leveraging high-level contextual clues to reduce indeterminacy within areas containing strong reflections
- Alignment-invariant loss function that facilitates exploiting misaligned real-world training data that is much easier to collect
- A new dataset including 450 unaligned image pairs that is publicly available to the community

Our collected unaligned dataset

Single Image Reflection Removal Exploiting Misaligned **Training Data and Network Enhancements**

Kaixuan Wei¹ Jiaolong Yang² Ying Fu¹ David Wipf² Hua Huang¹ ¹ Beijing Institute of Technology, ² Microsoft Research

Labor-intensive

No need for a tripod, table, or other special hardware

- Context encoding modules
 - Channel-wise context (yellow) :
 - Multi-scale spatial context (green) :
- Loss function for unaligned data
 - Highest-level VGG feature loss :
 - $l_{adv}^G = -\log \theta$ Adversarial Loss :

Alignment-invariant Test

Finetuning using misaligned image pair by different loss functions

different layers of VGG-19. Only the highest-level feature ('conv5_2') yields satisfactory result.

channel attention module pyramid pooling module

$$l_{inv} = \|\phi_h(T) - \phi_h(\hat{T})\|_1$$

g(D_{\theta_D}(T, \hat{T})) - log(1 - D_{\theta_D}(\hat{T}, T))

analysis

Finetuning with Unaligned Data

Score Range Ratio	BDN	Ours	2
(0.25, 2]	78%	54%	-
[-0.25, 0.25]	18%	36%	
[-2, -0.25)	4%	10%	0
Average Score	0.62	0.51	-1

Human preference scores of 50 tested image pairs. (2 indicating the finetuned result is significantly better while -2 the opposite)

[1] Fan et al. A generic deep architecture for single image reflection removal and image smoothing. ICCV, 2017. [2] Zhang et al. Single image reflection separation with perceptual losses. CVPR, 2018. [3] Yang et al. Seeing deeply and bidirectionally: A deep learning approach for single image reflection removal. ECCV, 2018.

LONG BEACH **CALIFORNIA** June 16-20, 2019

