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B Challenges of Single Image Reflection Removal

State-of-the-art methods trained on synthetic data generalize poorly
to real-world cases. These failures stem from:

— the fundamental ill-posedness of the problem

— the domain gap between the synthetic world B /

interest -

and real-life photographs

— the insufficiency of densely-labeled real-world
training data

| abor-intensive

B Contributions

— Context encoding modules that are capable of
leveraging high-level contextual clues to
reduce indeterminacy within areas containing
strong reflections

— Alignment-invariant loss function that
facilitates exploiting misaligned real-world
training data that is much easier to collect
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pairs that is publicly available to the community hardware

Our collected unaligned dataset
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B Overview of Our Approach
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— Context encoding modules
e Channel-wise context ( ) . channel attention module

e Multi-scale spatial context (green) : pyramid pooling module

— Loss function for unaligned data
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line = ||on(T) — on(T)|

 Highest-level VGG feature loss : 1
« Adversarial Loss : Loy = —log(De,, (T, T))—log(1— Dy, (T,T))

B Alignment-invariant Test
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Finetuning using misaligned image pair by different loss functions
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Results finetuned with feature loss based upon Misalignment
different layers of VGG-19. Only the highest-level toleration
feature (‘conv5_2’) yields satisfactory result. analysis
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B Method Comparison on Real-world Images
Input CEILNet [1_ | Zhang et al. [] BDN [3] | Ours | Referen

B Finetuning with Unaligned Data
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Human preference scores of 50 tested image pairs. (2 indicating the finetuned result is

significantly better while -2 the opposite)
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